Climate sensitivity with a time dependent

climate feedback parameter.

Robin Guillaume-Castel & Benoit Meyssignac
LEGOS, Toulouse University - robin.guillaume-castel@legos.obs-mip.fr

Perturbation theory provides a rigorous theoretical framework to develop energy balance models (EBM) with a time-dependent climate feedback parameter A(t),
along with a robust definition of A(t) (see companion poster by Meyssignac et al.).

We evaluate A(t) following abrupt CO, increase in 10 climate models from the LongRunMIP experiments. New estimates of A(t) show much smaller time variations
than previous published estimates.

Analysis of the asymptotic form of the radiative response with the new EBM yields a new expression of the climate sensitivity which explicitly depends on the climate
state before the forcing is applied (A;), and on temporal changes of A (A1). The spread in AA/A, explains 83% of the spread in LongRunMIP effective climate
sensitivity.

We confirm that the non-linear radiative response of the Earth across CO, increase scenarios is explained by the temperature-dependence of A and thus the
temperature-dependence of the climate sensitivity. However, we show that A(t) never becomes positive even in high CO, increase scenarios.
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Results
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» The variations of A are very small compared to ), » Some models show a positive dependence on AF

Conclusion  Fuwrewok
» Using perturbation theory, we derive an energy balance model with a variable A Applying the formalism to non constant
® forcing simulations : 1%CO02 — Historical
» We evaluate the dynamic evolution of A in 10 climate ACE) = N —Fo —AF
models from the LongRunMIP experiment as: "~ Tso + AT ® Applying the formalism to obervations

» We show that variations of A are two orders of magnitude smaller than its initial value
» This formulation allows for a continuous A from control to abrupt expriments @ Physical understanding of AA

» From our EBM, we derive a new formula for the climate
sensitivity, with an explicit dependence on the base state of
the climate and on the variations of A
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> We show that A never becomes positive even under high CO, forcing: no runaway greenhouse effect e
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