

Climate sensitivity with a time dependent climate feedback parameter.

Robin Guillaume-Castel & Benoit Meyssignac

LEGOs, Toulouse University - robin.guillaume-castel@legos.obs-mip.fr

Perturbation theory provides a rigorous theoretical framework to develop energy balance models (EBM) with a time-dependent climate feedback parameter $\lambda(t)$, along with a robust definition of $\lambda(t)$ (see [companion poster by Meyssignac et al.](#)).

We evaluate $\lambda(t)$ following abrupt CO₂ increase in 10 climate models from the LongRunMIP experiments. New estimates of $\lambda(t)$ show much smaller time variations than previous published estimates.

Analysis of the asymptotic form of the radiative response with the new EBM yields a new expression of the climate sensitivity which explicitly depends on the **climate state before the forcing is applied** (λ_0), and on **temporal changes of λ** ($\Delta\lambda$). The spread in $\Delta\lambda/\lambda_0$ explains 83% of the spread in LongRunMIP effective climate sensitivity.

We confirm that the non-linear radiative response of the Earth across CO₂ increase scenarios is explained by the **temperature-dependence of λ** and thus the temperature-dependence of the climate sensitivity. However, we show that $\lambda(t)$ never becomes positive even in high CO₂ increase scenarios.

Theoretical Framework

The climate system is a **forced dynamical system**. The surface temperature follows

$$C \frac{dT_S}{dt} = F + R - H \quad 1$$

Where:
 ▶ H the deep ocean heat exchange
 ▶ C is the heat capacity
 ▶ T_S the surface temperature
 ▶ F the radiative forcing
 ▶ R the radiative response

On interannual and longer timescales, **R is linear with T_S** (Budyko, 1969): $R = \lambda T_S$ 2

▶ λ is the climate feedback parameter.

If λ varies with time, the energy budget reads:

$$C \frac{dT_S}{dt} = F + \lambda(t)T_S - H \quad 3$$

A given forcing F_0 is associated with steady state variables T_{S0} and λ_0 . On a steady state:

$$F_0 = \lambda_0 T_{S0} = R_0 \quad 4$$

$$H = 0 \quad 5$$

The preindustrial era/control experiments are considered to be on a **steady state**.

Perturbation theory

We assume a small deviation ΔF from F_0 induces $\Delta\lambda$. Following perturbation theory, we look for a solution to 3 :

$$T_S = T_{S0} + \Delta T_S$$

Equation 2 gives $R = \lambda T_S = (\lambda_0 + \Delta\lambda)(T_{S0} + \Delta T_S)$

$$R = \lambda_0 T_{S0} + \lambda_0 \Delta T_S + T_{S0} \Delta\lambda + \Delta\lambda \Delta T_S$$

Using 4 and a first order approximation leads to the surface EBM in anomalies:

$$C \frac{d\Delta T_S}{dt} = \Delta F + \Delta\lambda T_{S0} + \lambda_0 \Delta T_S - \Delta H \quad 6$$

More details on the theory can be found in [companion poster by Meyssignac et al.](#)

Data used

LongRunMIP

Rugenstein et al. (2020)

- ▶ Data from 10 different climate models in CMIP5 and CMIP6
- ▶ We use abrupt CO₂ runs from the LongRunMIP experiment
- ▶ Runs > 1000 years

Results

Evaluating $\lambda(t)$

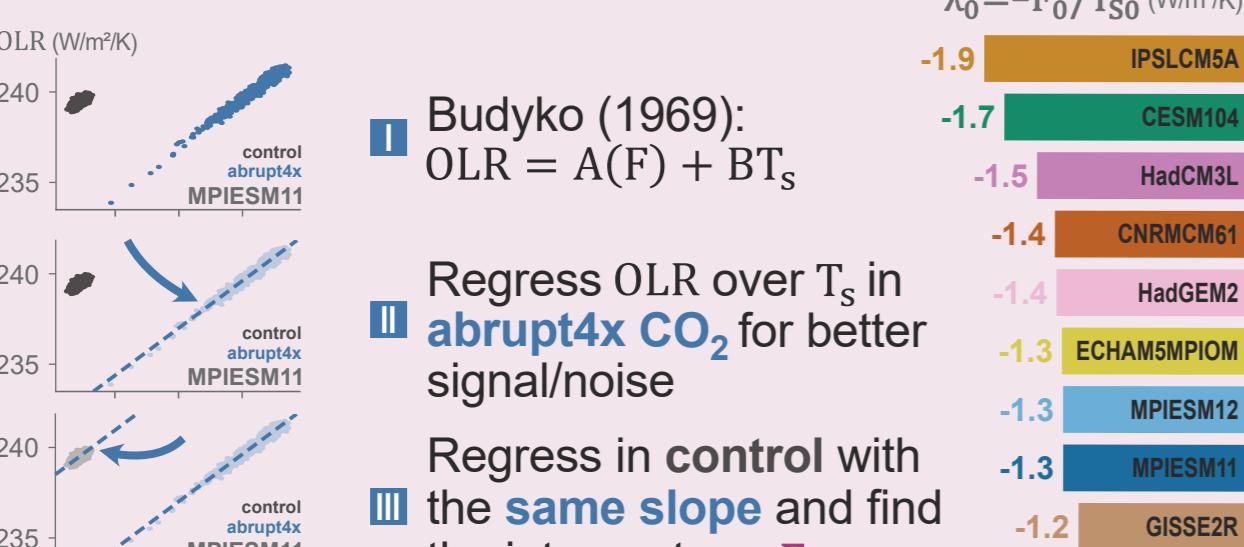
To use 6, we must evaluate λ as $\lambda(t) = \frac{N - F_0 - \Delta F}{T_{S0} + \Delta T_S}$

Computing F_0 and λ_0

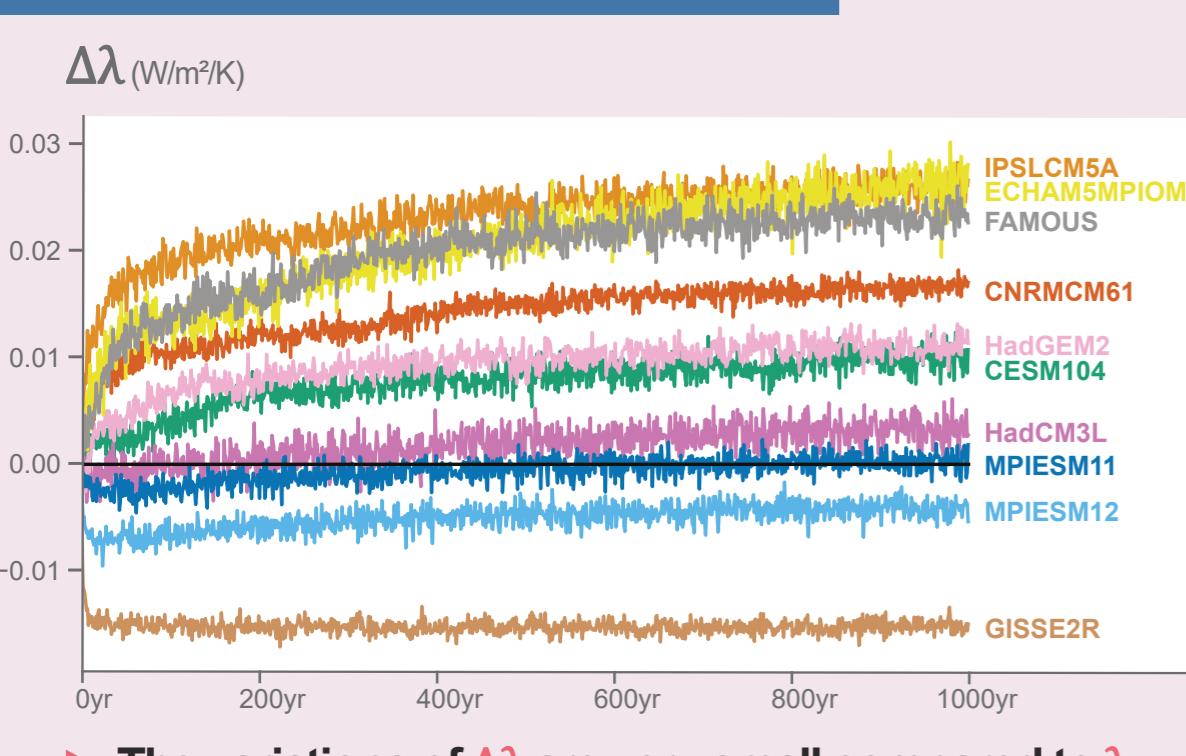
The challenge is to compute F_0 . Two components:

- ▶ Solar F_0 : absorbed solar radiation
- ▶ "Longwave" (LW) F_0 due to atmospheric composition: ?

Computing LW F_0



Time series of λ



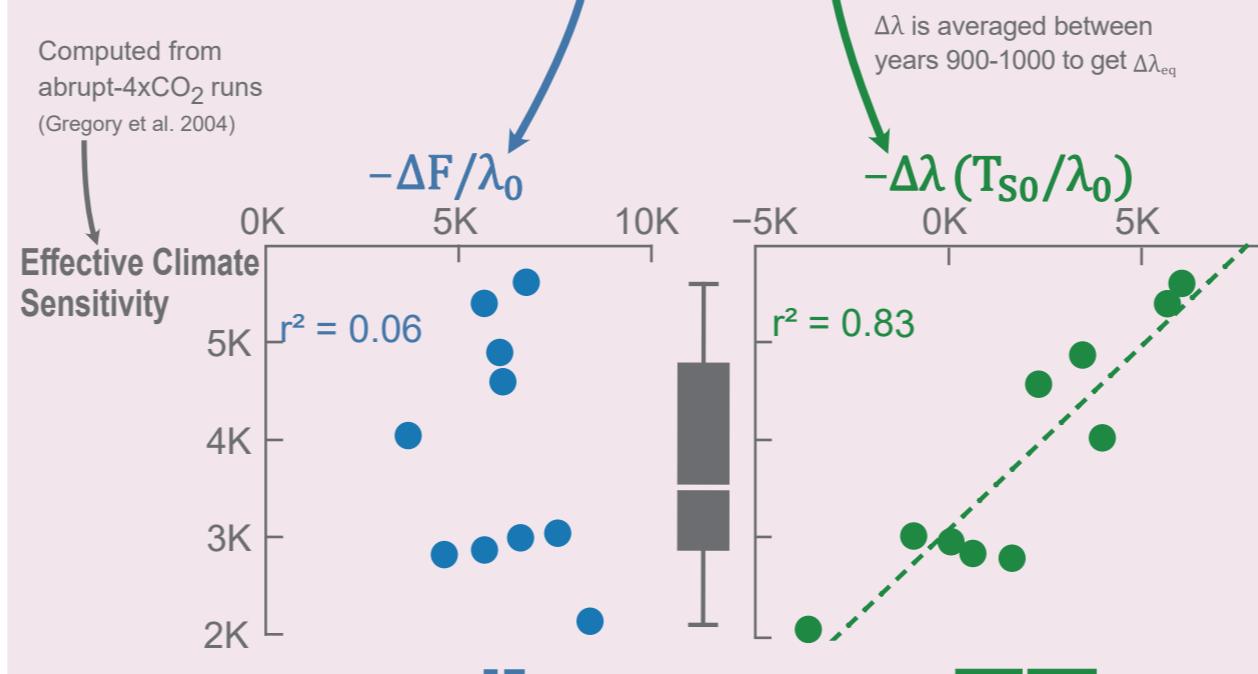
Climate sensitivity with $\lambda(t)$

The climate sensitivity is obtained by equilibrating 6 :

$$C \frac{d\Delta T_S}{dt} = 0 \quad H = 0$$

Climate sensitivity with $\lambda(t)$

$$ECS = -\frac{\Delta F}{\lambda_0} - \frac{\Delta\lambda_{eq}}{\lambda_0} T_{S0}$$

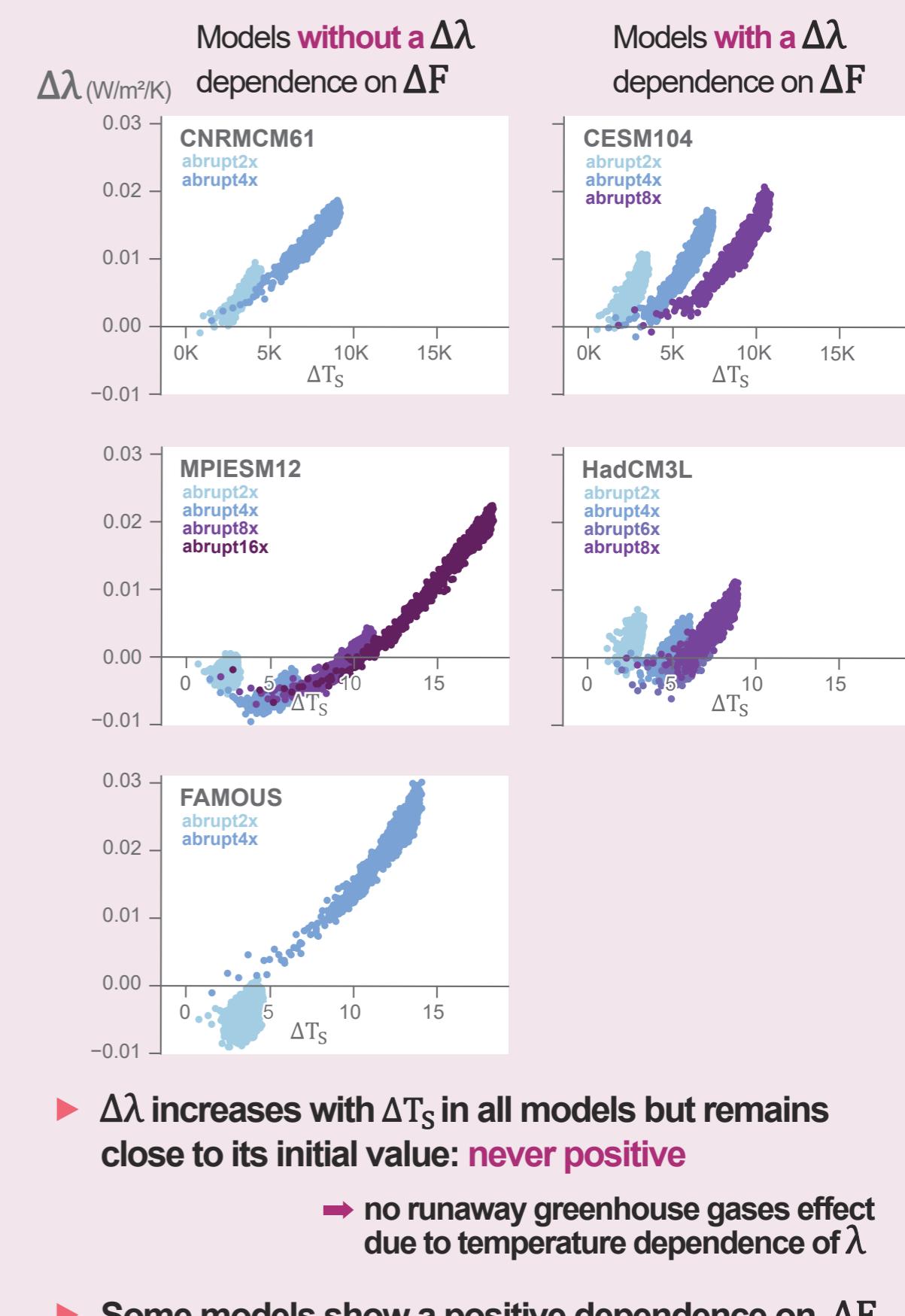


- ▶ There is little spread in $\Delta F/\lambda_0$
- ▶ The spread in ECS is mostly explained by $\Delta\lambda(T_{S0}/\lambda_0)$
- ▶ This shows an explicit link between the pattern effect in $\Delta\lambda$ and the climate sensitivity.

ΔT_S dependence of $\lambda(t)$

We search for dependences of $\Delta\lambda$ on ΔF and ΔT_S

We use models with more than 2 abrupt experiments to get different ΔF and ΔT_S ranges



Conclusion

- ▶ Using perturbation theory, we derive an energy balance model with a variable λ
- ▶ We evaluate the dynamic evolution of λ in 10 climate models from the LongRunMIP experiment as:
- ▶ We show that variations of λ are two orders of magnitude smaller than its initial value
- ▶ This formulation allows for a continuous λ from control to abrupt experiments
- ▶ From our EBM, we derive a new formula for the climate sensitivity, with an explicit dependence on the base state of the climate and on the variations of λ
- ▶ We find that the relative variations of λ explain the spread in effective climate sensitivity
- ▶ We confirm that the temperature dependence of λ increases the climate sensitivity for high CO₂ forcing
- ▶ We show that λ never becomes positive even under high CO₂ forcing: no runaway greenhouse effect

$$ECS = -\frac{\Delta F}{\lambda_0} - \frac{\Delta\lambda_{eq}}{\lambda_0} T_{S0}$$

Future work

- ▶ Applying the formalism to non constant forcing simulations : 1%CO₂ – Historical
- ▶ Applying the formalism to observations
- ▶ Physical understanding of $\Delta\lambda$

Budyko (1969). The effect of solar radiation variations on the climate of the Earth. *Tellus*, 21(5), 611-619.

Gregory et al. (2004). A new method for diagnosing radiative forcing and climate sensitivity. *Geophysical Research Letters*, 31(3).

Rugenstein et al. (2020). LongRunMIP: motivation and design for a large collection of millennial-length AOGCM simulations. *Bulletin of the American Meteorological Society*, 100(12), 2551-2570.