Can a neural network learn atmospheric
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dynamics for extreme rainfall?

Case study using Explainable Al in Western N
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There is room for improvement in the model performance
but it still does some good predictions.
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In test data: 257 existing extreme events, predicted four
times by the neural network.
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It is trained to predict the occurrence of daily
extreme rainfall (90th percentile) iIn
Western Norway over multiple days from
maps of atmospheric variables (u850 in
this case).

Data used
ERAS daily data 1959-2021

Northern hemisphere regridded to 32x128
Subset over the Atlantic and Europe

23 011 samples
70% train, 10% validation, 20% test

97 events were correctly predicted every time, and 3 out of 4 times
for 149 events. The best predictions are in winter and autumn.
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N of predictions for each extreme event: Extreme-Moderate-No rain.

Is the neural network making predictions based on atmospheric dynamics ?

Using Explainable Al - Integrated Gradients

What the inputs are:

Normalized U850 input features.

Where the model
focuses on:

Sensitivity of the prediction to the
different input features. This is
independent of the feature amplitude.

Where the model
should focus on:

Dynamical precursors determined
from statistical composite analysis.
From Dorrington et al. (2024).

What is the prediction
based on:

Attribution of each feature to how
much it contributes to the prediction.
This corresponds to the sensitivity times
the input features. Values are relative to
the maximum for better readability.

CNN kernel3x3 stride1
+max pool

Yes, but:

The architecture of the
model changes the shape
of the attributions

The overall regions seem similar
across architectures, but there
are clear artifacts: without the
max pool, we can see the kernel
shapes; the attributions of the
transformer shows the 4x4 patches.
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Yes (?)

The neural network seems to pick
up reasonably physical areas

It can also pick up different physical cases:

Attributions for two individual extreme events:
Contours show geopotential height at 500hPa

Attributions in probability unit
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Summary

We trained a neural network (NN) to predict
extreme rainfall in Western Norway.

Using explainable Al, we showed that the
NN seems to make decisions based on
physically relevant regions.

However, our results are very dependent
on the architecture of the NN, which means
further interpretability requires caution.
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