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ABSTRACT: The pattern of surface warming plays a significant role in Earth’s response to radiative forcing as it influen-
ces climate feedbacks. Distinct patterns of surface warming lead to different equilibrium and transient responses to identi-
cal forcing, emphasizing the need to analyze this pattern effect. While existing studies have primarily focused on assessing
the influence of surface warming patterns on long-term warming (equilibrium climate sensitivity, committed warming),
their role in the transient global warming remains partially understood. Here, we introduce a novel analytical method to
quantify the influence of the pattern effect on transient global warming. We use an energy budget which explicitly sepa-
rates the radiative response caused by uniform global surface warming from the response induced by changing surface tem-
perature patterns. Using this new energy balance model, we assess the relative contribution of the radiative response
induced by changing surface temperature patterns to global warming in idealized forcing experiments (1pctCO,) from
12 CMIP6 models. We show that the pattern effect consistently dampens global warming in 9 out of 12 models at decadal
time scales. We specifically quantify that the pattern effect induces a change in the transient climate response of —6.0%
[=11.3%; 0.5%] (mean and quantiles 17-83) compared to a scenario where the warming pattern is uniform. Our study
demonstrates that distinct models exhibit significantly different transient global warming with differences being amplified
by variations in the pattern effect. Overall, our results highlight the importance of changing warming patterns, through the
pattern effect, in influencing decadal-scale transient warming. These findings support recent suggestions to incorporate
warming pattern uncertainties in future climate projections.

KEYWORDS: Sea surface temperature; Climate change; Climate sensitivity; Feedback; Radiation budgets

1. Introduction (Andrews et al. 2015; Armour et al. 2013), a phenomenon
usually referred to as the “pattern effect” (Stevens et al. 2016;
IPCC 2021). In particular, the tropical Pacific temperature
gradient between the Indo-Pacific warmpool to the west and
the cold tongue to the east has been shown to affect the Pa-
cific Walker circulation, a process associated with changes in
the low cloud amount in subsidence areas in the eastern Pa-
cific. As a result, the cloud radiative effect is changed, leading
to substantial changes in the TOA energy budget (Andrews
and Webb 2018; Ceppi and Gregory 2017; Schiro et al. 2022;

Zhou et al. 2017).
Long-term warming, such as the equilibrium climate sensi-
tivity (ECS), or the committed warming, is significantly af-
fected by these warming patterns (Andrews et al. 2018, 2022;
Armour 2017; Dong et al. 2021; Marvel et al. 2018; Sherwood
et al. 2020; Zhou et al. 2021). More specifically, Dong et al.
(2021) showed that the effective climate sensitivity estimated
from CMIPS abrupt-4xCO, simulations was on average 2.3 K
higher than estimated with historical observations. This differ-
ence was mainly attributed to the pattern effect. In addition,
~ @ Denotes content that is immediately available upon publica-  7hoy et al. (2021) estimated that current committed warming
tion as open access. would increase from 1.3 to 2 K if observed warming patterns
transitioned to the warming patterns simulated in abrupt-

& Supplemental information related to this paper is available ~ 4xCO, simulations.

at the Journals Online website: https://doi.org/10.1175/JCLI-D-24- Similarly, other studies have focused on the influence of the
0229.51. pattern effect on transient global warming and how it could
influence climate projections (Geoffroy et al. 2013b, 2012;

Corresponding author: Robin Guillaume-Castel, robin.guillaume- ~ Alessi and Rugenstein 2023; Frey et al. 2017; Watanabe et al.
castel@uib.no 2021; Dong et al. 2021; Armour et al. 2024). Geoffroy et al. (2012)

Understanding what causes changes in global mean surface
temperature (GMST) is one of the most critical aspects of cli-
mate change science as GMST changes play a key role in
Earth’s energy budget. GMST is also a key driver of regional
climate change and associated impact drivers. Indeed, the pat-
tern of many variables, such as surface temperature, ocean
heat content, sea level change, precipitation extremes, and
others, scales with GMST, making GMST a relevant index of
future local changes (e.g., Santer et al. 1990; Mitchell 2003;
Perrette et al. 2013; Grose et al. 2017).

GMST changes are governed by Earth’s energy budget
both at the top of the atmosphere (TOA) and at the surface
(Archer and Pierrehumbert 2011). In recent decades, growing
evidence has highlighted how the response of the TOA en-
ergy budget to increasing radiative forcing is intricately linked
to surface warming patterns through their radiative effect
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notably quantified the influence on transient warming of the
ocean heat uptake efficacy, a quantity that can be representa-
tive of the pattern effect (Geoffroy et al. 2013b; Winton et al.
2013). They estimated that, in CMIP5 models, the ocean heat
uptake efficacy reduces the transient climate response (TCR,
a common metric used to quantify transient warming) by
0.3 = 0.3 K, which corresponds to approximately 15% of the
total TCR. Using a subset of CMIP6 models, Dong et al.
(2021) quantified that the TCR estimated from historical
simulations was on average 13% smaller than estimated with
1pctCO, simulations, mostly because of the pattern effect.
More recently, other studies (Alessi and Rugenstein 2023;
Watanabe et al. 2021; Dong et al. 2022; Armour et al. 2024)
have shown that changing warming patterns could introduce
uncertainties in global climate projection. More specifically,
Alessi and Rugenstein (2023) determined that the pattern ef-
fect could increase the total model uncertainty by 40% for
global climate projections of surface temperature. They addi-
tionally quantified that, for one model, the pattern effect could
increase global surface warming by up to 1 K in the scenario
RCP8.5. Similarly, Watanabe et al. (2021) quantified that the
pattern effect could amplify global warming by 9%-30% in cli-
mate projections for different scenarios. In addition, Armour
et al. (2024) showed that the peculiar observed warming pat-
terns have slowed down global warming over recent deca-
des. A more uniform warming would have led to an increased
global warming rate.

Overall, these different studies have highlighted how un-
derstanding the influence of the pattern effect on transient
warming is critical for understanding global warming and for
accurate climate projections. While multiple frameworks have
been proposed to determine how the pattern effect modifies
long-term warming, relatively few attempts have been made
to quantify its impact on transient global warming. This paper
introduces a novel framework allowing to analytically deter-
mine the influence of the pattern effect on global transient
warming across the entire time series.

We introduce a novel approach that employs a recently de-
veloped multivariate energy balance model (Meyssignac et al.
2023b) to quantify the influence of the pattern effect on tran-
sient warming. By explicitly separating the contributions of
uniform global surface warming from the contribution of
changing warming patterns to Earth’s radiative response, we
develop a relevant framework for quantifying and interpreting
the impact of the pattern effect on transient global warming.
Section 2 outlines the development of the multivariate energy
balance model and its application in assessing the GMST
change attributable to the pattern effect. Section 3 describes
the data and methodology employed to evaluate the pattern
effect and its impact on global warming in climate model simu-
lations. In section 4, we detail our findings, followed by a dis-
cussion in section 5 that explores the implications of our
results and the limitations of our approach. The paper con-
cludes with a summary of our key insights in section 6.

2. Analytical decomposition of the radiative response
of Earth

We assume that the preindustrial climate is in a dynamical
steady state. From there, the radiative forcing change induced
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by increasing the atmospheric concentration of carbon diox-
ide F causes a global energy imbalance N. In response to this
imbalance, the surface temperature of Earth changes, gradu-
ally increasing the radiative response of Earth R to compen-
sate for the imbalance induced by the increasing atmospheric
concentration of carbon dioxide. Earth’s energy budget reads

N(t) = F(t) + R(¢). @

A common approach is to consider that the radiative re-
sponse change R only depends on the GMST anomaly T
through a multiplicative constant A, usually called the climate
feedback parameter (Budyko 1969; Sellers 1969; North and
Kim 2017). The climate feedback parameter is derived from a
Taylor expansion of R(T). While the pattern effect has often
been interpreted as a time-dependent climate feedback pa-
rameter A(f) (Armour et al. 2013; Dong et al. 2019; Wills et al.
2021; Meyssignac et al. 2023a), we follow a different approach
which consists in explicitly separating the contribution of the
GMST and of changing warming patterns to the radiative re-
sponse beforehand, to account for the apparent time varia-
tions in the climate feedback parameter [we refer the reader
to Meyssignac et al. (2023b) for a detailed description and
comparison between the two approaches].

The key hypothesis is that the radiative response of Earth
depends not only on the GMST change 7T (¢) (the overbar de-
notes a global mean quantity) but also on changes in the pat-
tern of surface warming, denoted as T%(t), that we define as
the distance of local surface warming to global mean surface
warming. By explicitly separating these two dependencies, the
change in radiative response R, which follows the increased
radiative forcing F, can be written using a first-order Taylor
expansion with regard to these different variables (Zhang
et al. 2023; Bloch-Johnson et al. 2024; Meyssignac et al.
2023b):

R — dR
R(t)==T(@) +
® oT ® gaT)’(

T, @
where x stands for the locations on the globe. Here, the radia-
tive response is separated into two different terms. The first
term corresponds to the radiative response to changes in
GMST. The value of dR/AT corresponds to the magnitude of
the net climate feedback if the warming is uniform. We de-
noted this term as A, corresponding to a uniform warming cli-
mate feedback parameter. The second term corresponds to
the radiative response to the changes in the surface tempera-
ture patterns with no changes in the GMST. In other words,
this term represents the pattern effect. Note that, while it is
more common to study the pattern effect relative to equili-
brated warming (e.g., Dong et al. 2022; Sherwood et al. 2020;
Andrews et al. 2018, 2022), a few recent studies follow an ap-
proach similar to ours by comparing a given pattern to uni-
form warming (Zhang et al. 2023; Bloch-Johnson et al. 2024;
Meyssignac et al. 2023b). The term pattern effect in this paper
designates the second term here, which is the radiative re-
sponse to nonuniform warming, and we denote it as P. For
simplicity, dR/0T, is denoted as m, for a given x such that
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pP= 2 M, T:(t). This multivariable approach is, in essence,
similar to other studies where the radiative response to uni-
form warming is separated from the radiative response to
changing warming patterns, either explicitly (Zhou et al. 2016;
Gregory et al. 2020) or through an additional variable in
the global energy budget (e.g., Ceppi and Gregory 2019;
Fueglistaler 2019).

Incorporating the radiative response decomposition [Eq. (2)]
in the global Earth energy budget [Eq. (1)] leads to

N(r) = F(t) + A, T(t) + P(0). 3)
To determine the influence of the pattern effect on the
GMST change, we use the following simple two-layer diffu-
sion model for ocean heat uptake (Dickinson 1981; Gregory
2000; Raper et al. 2002; Held et al. 2010; Geoffroy et al.
2013a; North and Kim 2017; Rohrschneider et al. 2019):

dT

C— =F@t) + A, T(@t) + P() — v(T — T,)
dt u
" )
v YT To)

where C and C, are the heat capacities of the surface layer
and of the deep ocean layer, respectively; vy is the diffusion
heat exchange coefficient between the two layers; and To is
the temperature change of the deep ocean layer. By construc-
tion, the variable P represents higher moments of the surface
temperature distribution than T, which means P can be con-
sidered mostly independent from T.

In Eq. (4), the pattern effect acts as a pseudoforcing (Zhou
et al. 2021), which contributes to the GMST change the same
way that the radiative forcing does. As a consequence, the
surface GMST change can be written as the sum of two con-
tributions: the GMST response to the radiative forcing that
we denote it as 7, and the GMST response to the pattern ef-
fect that we denote it as T ,. Similarly, the deep ocean temper-
ature can also be written as the sum of two contributions T
and T p. The two-layer energy budget now reads

T(t) = Tp(t) + Tplt)
Tolt) = Toplt) + Top0)
c% — AT ) + YTy — Typ) = F(1)
Do (T, Ty =0 -0
e ATy + AT, ~ Ty = PO)
od:t 'y(T - TOP) =0

Solving Eq. (5) [following the same approach as Geoffroy
et al. (2013a), Rohrschneider et al. (2019)] yields an analytical
expression of the time changes in the GMST response to the
radiative forcing and of the GMST response to the pattern ef-
fect. At a given time ¢, they read
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C(‘P ) [d/f F(s)e ™ ds + 3 .r F(s)e_(’_‘)/f\ds]

)[‘l’/ P(s)e*(t S/T/dS + l[l f P(s)e (1= s/T,dS]
(6)

C(w -

where 7, and 7, are the slow and fast characteristic times,
respectively, and ¢ and i are the mode parameters [see
appendix A and Geoffroy et al. (2013a), Rohrschneider et al.
(2019) for more details].

Equation (6) suggests the GMST response to the pattern ef-
fect has the same temporal structure as the response to the forc-
ing. They both show two characteristic time scales associated
with the atmospheric and surface feedback strength (repre-
sented by A,) and with the vertical heat transport in the ocean
(represented by the parameters C, Cy, and vy). The first
time scale corresponds to an interannual to decadal re-
sponse (7r ~ 1-3 years in climate models), while the second
time scale represents the multidecadal to centennial response
[7s ~ 100 years in climate models, Smith et al. (2021)].

3. Data and methods

In this section, we quantify each term of the multivariate
energy budget [Eq. (3)] in 1pctCO, simulations from different
climate models. We separately compute the radiative re-
sponse induced by a uniform warming, the pattern effect, and
the radiative forcing. Using these estimates, we validate the
multivariable energy balance model introduced in section 2
by checking that the global energy budget is closed in climate
model simulations. We then use Eq. (6) to quantify the global
mean surface temperature change induced by the pattern ef-
fect in 1pctCO, simulations ran with climate model.

a. Data used in this study

To evaluate the transient warming in response to increasing
CO, concentrations, we choose to approach the problem
using idealized simulations from the latest generation of
coupled climate models: CMIP6 (Eyring et al. 2016). The
1pctCO, experiment allows to simulate transient warming
similar to what has been experienced in the twentieth century
and what is expected to happen in the twenty-first century. In
these simulations, carbon dioxide concentrations are in-
creased at a rate of 1% per year from the preindustrial con-
centration, leading to a doubling in the CO, concentration
after 70 years and a quadrupling after 140 years. This experi-
ment is notably used to quantify a commonly used climate
metric that is representative of transient warming: the TCR
(IPCC 2021). The TCR is the GMST change reached after
70 years of the 1pctCO, experiment and is usually considered
representative of warming in the next century (Grose et al.
2018). In this paper, we study the influence of the pattern ef-
fect not only on the time-dependent transient GMST change
but also on the TCR.

To determine A,, our analysis requires models to be run
with uniform warming experiments. Such experiments (nota-
bly amip-p4K, amip-m4K, and piSST-pxK) are part of the
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Cloud Feedback Model Intercomparison Project (CFMIP;
Webb et al. 2017). Overall, 13 models were run with amip-
p4K experiments, nine with amip-m4K and four with piSST-
pxK. Out of the 13 models, only one (TaiESM1) was not
usable because of missing data on ESGF, where CMIP data
are stored.

To compute the pattern effect, we use Green’s functions
(GFs), which are extensively detailed in Bloch-Johnson et al.
(2024). The GFs are based on hundreds of climate model sim-
ulations, which are combined to provide an estimate of the ra-
diative response to a localized anomaly of sea surface
temperature. Ideally, we should use each of the individual GF
of all 12 CFMIP models. However, at the moment, six GFs
are readily available online, and only two models are within
the 12 CFMIP models selected. To conduct a multimodel
analysis, we use all 12 CFMIP models combined with the six
GFs. The models used and their corresponding references are
presented in Table 1.

b. Quantifying the radiative response induced by
uniform warming

In our framework, the uniform warming climate feedback
parameter A, is assumed to be an AOGCM-specific constant
that depends on the response of the atmosphere to surface
warming. To determine such quantity, we use pairs of forced
atmospheric simulations with similar boundary conditions, ex-
cept that an additional, spatially uniform surface temperature
anomaly is prescribed in one of the two simulations [usually
referred to as “Cess experiments” (Cess et al. 1990)]. Within
CMIP6, three such pairs exist, namely, amip-p4K and amip,
amip-m4K and amip, and piSST-pxK and piSST. When com-
paring two experiments in a given pair, both the radiative
forcing and the pattern of surface temperature are identical as
the simulations only differ by global mean surface tempera-
ture. Therefore, subtracting the global energy budget [Eq. (3)]
from one experiment to another leads to

Nz(l) - Nl(t) = /\u[Tz(t) - Tl(t)] (7)

From this equation, we deduce A, by dividing the temporal
averages (represented by (-)) of both terms by the GMST
difference:

_ N = N, @) _ (AN(@))

MTTL 0 - T,0)  (ATW) ®

Due to the prescribed sea ice in both amip-p4K simulations
and Green’s function experiments, the sea ice albedo feed-
back is missing from the estimates of A,. While some studies
have shown the influence on sea ice on the pattern effect (e.g.,
Dong et al. 2019; Andrews et al. 2018, 2022), this is not the fo-
cus of the current paper. We therefore choose to follow the
simpler approach of Ceppi and Gregory (2019), where the
lack of sea ice albedo feedback is corrected by adding a cons-
tant value with a relevant magnitude oe. to the initial value
of A,. The method to obtain values of «;.. is detailed in
appendix B.

The adjusted value of A, can be expressed as
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TABLE 1. Coupled models and Green’s functions used in this
study.

Coupled CMIP6 models

Model Coupled model reference
BCC-CSM2-MR Wu et al. (2019)
CESM2 Danabasoglu et al. (2020)
CNRM-CM6-1 Voldoire et al. (2019)
CanESMS5 Swart et al. (2019)
E3SM-1-0 E3SM Project (2018)
GFDL-CM4 Dunne et al. (2020)
GISS-E2-1-G Kelley et al. (2020)

HadGEM3-GC31-LL
IPSL-CM6A-LR

Williams et al. (2018)
Boucher et al. (2020)

MIROC6 Tatebe et al. (2019)
MRI-ESM2-0 Yukimoto et al. (2019)
NorESM2-LM Seland et al. (2020)
Model reference/Green’s
GF model function reference

CAMA4 Neale et al. (2013)/Dong et al. (2019)
CAMS Neale et al. (2010)/Zhou et al. (2017)
CanESM5 Swart et al. (2019)/Bloch-Johnson

et al. (2024)
ECHAMG6 Stevens et al. (2013)/

Alessi and Rugenstein (2023)
GFDL-CM4 Zhao et al. (2018)/Zhang et al. (2023)
HadCM3 Gordon et al. (2000)/Bloch-Johnson

et al. (2024)

_ (AN@))
Au - <AT(1‘)> + ice (9)

The results obtained are summarized in Table 2. The three
pairs of experiments used to determine A, are generally consistent
for a given model at the level of a tenth or two of W m 2 K™,
with slightly more negative values obtained with amip-m4K
than amip-p4K [thoroughly documented in Ringer et al.
(2023)]. The value we use for A, corresponds to the mean value
for all pairs available per model, which yields a multimodel
mean of —1.29 = 027 Wm > K~! (multimodel mean and stan-
dard deviation, * always refers to one standard deviation). The
radiative response induced by uniform warming is then com-
puted by multiplying the GMST time series from each model
by the uniform warming climate feedback parameter A,,.

¢. Quantifying the pattern effect

An increasingly more common way to quantify the influ-
ence of local surface temperature changes on the global radia-
tive response is to use Green’s functions (Barsugli and
Sardeshmukh 2002; Dong et al. 2019; Bloch-Johnson et al.
2024; Zhou et al. 2017; Alessi and Rugenstein 2023; Zhou et al.
2023; Zhang et al. 2023; Williams et al. 2023). These functions
are determined using hundreds of forced atmospheric simula-
tions. In each simulation, a local patch of SST change is ap-
plied on top of a reference SST background state. Green’s
functions are then computed using the global top of atmo-
sphere radiation budget from all of these experiments.
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TABLE 2. Determining A, using multiple pairs of simulations.

AN/AT
Wm?2K! Qice Au
Model piSST-pxK amip-p4K amip-m4K Mean o K/K Wm2K!

BCC-CSM2-MR — -1.79 -1.85 -1.82 0.04 0.35 —1.47
CESM2 —1.53 -1.75 -1.77 —1.68 0.13 0.33 -135
CNRM-CM6-1 —-1.45 -1.39 -1.65 -1.50 0.14 0.43 -1.07
CanESM5 — -1.21 -1.18 -1.20 0.03 0.38 —-0.81
E3SM-1-0 — -1.56 — -1.56 — 0.28 -1.28
GFDL-CM4 — -1.82 —-1.88 -1.85 0.04 0.45 —~1.40
GISS-E2-1-G — -1.92 — -1.92 — 0.22 -1.70
HadGEM3-GC31-LL -1.31 -1.33 -1.35 -1.33 0.02 0.34 -1.00
IPSL-CM6A-LR —-1.34 -1.25 -1.53 -1.37 0.14 0.39 —-0.98
MIROC6 — —1.99 — —1.99 — 0.42 —-1.57
MRI-ESM2-0 — -1.79 -1.85 -1.82 0.04 0.49 -133
NorESM2-LM — —1.80 — —1.80 — 0.33 —-1.47
Mean —1.41 —1.63 -1.63 —1.65 0.07 0.37 -1.29
Standard deviation 0.10 0.27 0.26 0.26 0.05 0.08 0.27

The Green functions relate the increase in global radiative
response per local SST change. The pattern effect (i.e., the ra-
diative response change due to changing warming patterns) is
then computed as

P(t) = 2, GF(x)[SST(x, t) — SST(/)], (10)

where x indicates locations on the global ocean, GF(x) refers
to the top of atmosphere radiation budget Green’s function
corresponding to the location x, SST(x, ¢) is the local SST
change at the location x, and SST is the global mean SST
change.

Green’s functions are specific to each atmospheric model
used. Ideally, we should use each model’s own Green’s func-
tions to compute the quantity P(z). As of today, only six
Green’s functions are freely available online (see Table 1).
They are presented in Fig. S1 in the online supplemental
material. As shown in Fig. S1, and in Green’s Functions
Model Intercomparison Project (GFMIP; Bloch-Johnson et al.
2024), Green’s functions are generally consistent between
models, highlighting the same key regions, notably the warm-
pool region in the tropical western Pacific and the tropical At-
lantic to be responsible for most of the pattern effect.
Although the exact limits of the important regions and the
magnitude of the Green functions slightly differ from one
model to another, we will assume that using Green’s functions
from these six models allows for a first-order estimate of the
pattern effect in all CMIP6 models. This hypothesis should be
tested for each model’s own Green’s functions in the future.

d. Estimating the radiative forcing and closing the global
energy budget

To validate the multivariable approach presented in section 2,
we use the global energy budget [Eq. (3)] along with our esti-
mates of the radiative response to uniform warming and of the
pattern effect to estimate the radiative forcing F. We then
compare our results with independent estimates of the radia-
tive forcing using two additional simulations. The results for
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the radiative response to uniform warming and for the pattern
effect are shown in Fig. 3 and discussed in section 4.

In 1pctCO, experiments, the radiative forcing is, to a very
good approximation, linear with time, as CO, forcing in-
creases logarithmically with concentration (Myhre et al. 1998;
Romps et al. 2022). Therefore, there is an AOGCM-specific
constant f'such as

F(t) =f Xt (11)

which leads to the following energy budget, when included in
Eq. (3):

N() = fr + A,T(@) + P(1). (12)

For each model, we determine the value of fby fitting N(t) — A,
T(t) — P(t) as a linear function in time using ordinary least
squares. Figure 1 shows the linear fit alongside N(r) — A, T(1) —
P(¢) for all models studied. The linear forcing approximation is
a generally appropriate estimate for all models, with a maxi-
mum RMSE of 0.5 W m~? (for NorESM2-LM). We find values
of fof 0063 = 0.006 W m™2 yr !, which corresponds to an
equivalent 4xCO, forcing of F, -, =8.80=0.81Wm2.
These values are detailed in Table 3.

We now compare our results with independent estimates of
the radiative forcing, when the required simulations are avail-
able. One of the commonly used methods to compute radia-
tive forcing corresponds to using fixed-SST experiments
where a specific radiative forcing is applied [following Hansen
et al. (2005)]. In CMIP6, these experiments are piClim-control
and piClim-4xCO,, from the Radiative Forcing Model Inter-
comparison Project (RFMIP; Pincus et al. 2016). In this
method, two forced atmospheric simulations are run with sim-
ilar boundary conditions in sea ice and sea surface tempera-
ture. The only difference between the two is that the first
simulation has preindustrial CO, concentrations (piClim-
control), and the other has 4 times this amount (piClim-4xCO,).
We first estimate Fj ., =8.00 = 0.43Wm™ (multimodel
mean and standard deviation).
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FIG. 1. Linear estimates of radiative forcing using F(f) = ft (green) compared to N(r) — A, T(t) — P(¢) (gray) in 1pctCO, experiments
for all models studied. Overall, the linear approximation of the radiative forcing reproduces the temporal dynamics of the global energy

budget.

In these experiments, while the sea surface temperature is
held constant, the land temperature is allowed to vary, which
can slightly affect the GMST and introduce a bias in radiative
forcing estimates (Hansen et al. 2005; Forster et al. 2016; Smith
et al. 2018). To account for this, following Hansen et al. (2005),
we estimate the change in the radiative response caused by
land warming as A AT, where AT represents the GMST differ-
ence between the piClim-control and piClim-4xCO, experi-
ments. For consistency with previous applications of this
method, we assume that the radiative response to uniform
warming )luAT is sufficient for estimating this correction (i.e.,
we do not account for an extra pattern effect induced by land
warming). Note that for this correction, we used the estimate
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of A, before the adjustments for the sea ice albedo feedback,
as sea ice is fixed in the piClim experiments. We find a AT of
0.53 * 0.06 K, which leads to an estimated error in F,, , of
0.87 = 0.18 W m 2. Overall, the fixed-SST method, (:orrected2 for
land temperature warming, leads to F, 4xCO, = 8.88 + 0.52Wm™?

which is consistent with our mean estimates of F, ., . Indi-
2

vidual models are compared in Fig. S2. For 8 out of 10 mod-
els tested, the two methods yield forcing estimates within
0.4 m~2K~'. One model (MRI-ESM2-0) shows a slightly stron-
ger gap of 0.6 W m~ 2 K. The last model (NorESM2-LM)
shows the strongest difference 1.6 Wm 2K ™.

Better estimates of the radiative forcing corrected for land
warming could be obtained directly using experiments where
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TABLE 3. Radiative forcing estimates.

(Wm™)

piClim-4xCO, +

Model FWm2yr Fco. from f land corrections piClim-4xCO, land corrections
BCC-CSM2-MR 0.061 8.56 — — —
CESM2 0.071 9.82 9.89 8.90 0.99
CNRM-CM6-1 0.065 9.08 8.75 7.98 0.77
CanESMS5 0.061 8.54 8.20 7.60 0.59
E3SM-1-0 0.072 10.10 — — —_—
GFDL-CM4 0.069 9.64 9.25 8.23 1.02
GISS-E2-1-G 0.066 9.20 9.16 7.96 1.19
HadGEM3-GC31-LL 0.063 8.78 8.79 8.08 0.71
IPSL-CM6A-LR 0.062 8.62 8.80 8.01 0.79
MIROC6 0.058 8.11 8.26 7.33 0.92
MRI-ESM2-0 0.056 7.79 8.41 7.66 0.75
NorESM2-LM 0.053 7.41 9.25 8.25 1.00
Mean 0.063 8.80 8.88 8.00 0.87
Standard deviation 0.006 0.81 0.52 0.43 0.18

both the SST and the land surface temperature are prescribed
(Ackerley et al. 2018). Andrews et al. (2021) found that in
one model, the forcing obtained using feedback correction, as
it is done here, was 0.5 W m~? K~! lower than the forcing ob-
tained with the more accurate prescribed total surface tem-
perature. This bias could explain the differences we find in 9
out of 10 models. The stronger difference in NorESM2-LM
should require more investigation.

Overall, the energy budget is closed on average over the
150 years of the 1% CO, simulation at the level of a few
tenth of watts per square meter. To analyze more in details
the closure of the energy budget, we plotted the time series
of N(t) — A, T(t) — F(¢) against P(t), where F was estimated
using piClim simulations (Fig. 2). We find that for nine mod-
els (all but for NorESM2-LM), the energy budget is closed
on interannual time scales at the level of a few tenth of watts
per square meter until year 80 of the 1% CO, simulation.
For five models, it is closed for the full length of the simulation
(HadGEM3-GC31-LL, CESM2, IPSL-CM6A-LR, MIROCS,
and GISS-E2-1-G), while for three, it is closed until year 100
(CNRM-CM6-1, CanESMS, and GFDL-CM4).

For all models, the residuals of the energy budget [ie.,
N(r) = A, T(r) — F(r) — P(t), when F is estimated with piClim
simulations] evolve mostly linearly with GMST (see Fig. S3),
suggesting that the remaining small residual (and even the larger
error in the case of NorESM2) that is responsible for the nonclo-
sure of the energy budget is due to a small bias in the estimate
of A, or for both. In some cases (e.g., CESM2, CNRM-CM6-1),
these errors are not entirely linear. This could be explained by a
nonlogarithmic CO, forcing (Gregory et al. 2015) or by a qua-
dratic temperature dependence (Bloch-Johnson et al. 2021).
This is explored in section 5 with the example of CESM2.

To summarize, using independent estimates of the uniform
warming climate feedback parameter, of the pattern effect and
of the radiative forcing, we reproduce the global Earth energy
budget at decadal time scales within a few tenth of watts per
square meter with the multivariable energy budget [Eq. (3)].
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e. Quantifying the global mean surface temperature
change induced by the pattern effect

Now that all parameters in the global energy budget [Eq. (3)]
have been calculated, we calibrate the two-layer model [Eq.
(4)] to determine the optimal ocean parameters C, Cy, and ¥.
For this purpose, we use a random draw of these three parame-
ters based on the distributions of C, Cy, and y from CMIP6
models, as determined by Smith et al. (2021), following the
method of Geoffroy et al. (2013a). For each CMIP6 model, we
perform 10000 numerical integrations of the two-layer model,
each time with a different triplet (C, Cy, and y) from the ran-
dom draw. The triplet that minimizes the distance between the
reconstructed GMST through integration and the GMST out-
put from the model is chosen for the values of the ocean
parameters.

For all CMIP6 models, we find a triplet that reproduces
GMST changes with a maximum RMSE of 0.16 K over the
150 years of the 1pctCO, experiment (see Fig. S4). The lim-
ited RMSE confirms that with consistent values of ocean pa-
rameters, the two-layer model with the multivariable energy
budget accurately reproduces the temporal evolution of the
global mean surface temperature anomaly. Detailed values of
C, Cy, and vy are provided in Table 4. As C, Cy, and y have
been determined from a random draw within their assessed
ranges in CMIP6 (Geoffroy et al. 2013a; Smith et al. 2021),
they are consistent with the previously published estimates.

4. Results
a. The pattern effect in 1pctCO; simulations

The radiative response induced by nonuniform warming P
is shown in Fig. 3 for each model studied. Compared to the ra-
diative response to uniform warming, the pattern effect has
less impact on the total radiative response of the planet. In-
deed, P reaches mean absolute values of 0.40 * 0.27 W m™2,
which is approximately 15% of the mean absolute values of
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FIG. 2. Time series of the radiative response associated with the pattern effect estimated from Green functions P (red) and from the resid-
ual of the global energy budget as N — F — A, where F is estimated from piClim simulations (gray).

the radiative response induced by uniform warming of 3.01 +
0.54Wm™>.

In all models, the pattern effect shows significant changes at
multidecadal time scales, along with high-frequency variabil-
ity at annual to decadal time scales. The time series diagnosed
for each Green’s function are shown in Fig. S5. In Fig. S5, we
show that the different Green’s functions are generally consis-
tent qualitatively, although some quantitative differences ex-
ist. Notably, CAM4 (orange curves in Fig. S5) yields results
mostly outside of the range of the other models, with almost
systematically the strongest magnitudes of the pattern effect.
This can be explained by CAM4’s extreme sensitivity to
changes in warmpool temperature (see Fig. S1). Note that

CAMA4 is the only model where only positive anomaly patches
have been used to compute the Green functions, while other
models combine positive and negative patches. Positive patches
tend to lead to more sensitive Green’s functions [see Fig. 2 in
Bloch-Johnson et al. (2024)], which could explain why CAM4
is more sensitive than the other models.

b. Multidecadal response

Our results show that nonuniform warming generally am-
plifies the negative radiative response induced by uniform
warming. In 9 out of 12 models (all but E3SM-1-0, HadGEM3-
GC31-LL, and MRI-ESM2-0), the pattern effect induces a neg-
ative radiative response for most of the simulation, excluding

TABLE 4. Ocean parameters for the two-layer model for each model studied. The RMSE corresponds to the error of the GMST
from the integration compared with the simulated GMST.

C Cy y RMSE
Model Wm2K™! yr Wm2K! yr Wm?2K! K
BCC-CSM2-MR 5.82 86.69 0.67 0.09
CESM2 8.20 67.03 1.02 0.13
CNRM-CM6-1 8.20 67.03 1.02 0.18
CanESM5 8.77 51.75 0.77 0.11
E3SM-1-0 9.06 28.32 0.79 0.14
GFDL-CM4 9.44 56.03 0.85 0.10
GISS-E2-1-G 10.08 121.43 0.75 0.16
HadGEM3-GC31-LL 7.89 40.05 0.95 0.11
IPSL-CM6A-LR 7.83 36.68 0.95 0.16
MIROC6 8.11 76.03 1.11 0.15
MRI-ESM2-0 7.16 135.96 0.99 0.10
NorESM2-LM 8.27 73.40 1.00 0.15
Mean 8.24 70.03 0.91 0.13
Standard deviation 1.09 32.49 0.14 0.03
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FIG. 3. Annual means of the radiative response to uniform surface warming (gray) and to changing surface warming patterns with zero-
mean change (i.e., pattern effect; green) in the 1pctCO, experiments. The green lines for the pattern effect represent the mean values ob-
tained with the six Green’s functions. The green shaded areas represent the 17th and 83rd quantiles reached with individual Green’s

functions.

high-frequency variability. During the first decades of the
simulation, these models show a negative trend in the pat-
tern effect. At the minimum, the radiative response caused
by the pattern effect reaches a 10-yr average of —0.53 =
0.32 W m 2. In most models, this negative trend is followed
by an inflexion in the time series after 70-100 years of simu-
lation where the pattern effect stabilizes and the trend re-
verses to become positive.

The radiative response caused by the pattern effect be-
comes positive in three models only. In this case, the pattern
effect acts against the radiative response induced by uniform
warming, therefore increasing the global energy imbalance. In
E3SM-1-0, the pattern effect is constantly positive, with a
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neutral and stationary pattern effect during the first decades
followed by a positive trend after 50 years of simulations. The
pattern effect reaches a 10-yr average of 1.31 W m™2 toward the
end of the simulation. In CESM2 and HadGEM3-GC31-LL,
the time series inflection also yields positive values reaching
10-yr averages of 0.25 and 0.59 W m ™2, respectively, toward the
end of the simulation.

The multidecadal change in the pattern effect is likely to be a
forced response as the signal-to-noise ratio in 1pctCO, experi-
ments is substantial. We verified this by computing the pattern
effect in three different realizations of the 1pctCO, experiment
using the same climate model (CanESMS; see Fig. S6). The pat-
tern effect has the same multidecadal tendency in all three
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FIG. 4. (a) Multimodel mean pattern of warming at the time of doubling of carbon dioxide concentrations in
1pctCO, simulations, which correspond to local warming minus global warming, averaged over years 61-80 of the
simulation. (b) Intermodel standard deviation of the pattern of warming. (c¢) Multimodel mean pattern effect at the
time of doubling of carbon dioxide concentrations in 1pctCO, simulations, obtained by convolving the pattern of
warming with the mean Green’s functions. (d) Intermodel standard deviation of the pattern effect. The dotted,
dashed, and plain contour lines denote the mean Green’s functions contour for 1, 2, and 3 X 103Wm 2K},

respectively.

realizations and only high-frequency variability is different, sup-
porting the hypothesis of a forced signal.

To determine the regions that are responsible for this multi-
decadal forced signal in the pattern effect, we plot the multi-
model mean and the intermodel standard deviation of the
pattern of warming at the time of doubling the CO, in the at-
mosphere in 1pctCO2 simulations (averaged over years 61-80;
Figs. 4a,b) and convolve these maps with the mean Green’s
functions, computed from the six Green’s functions used in
the study (Figs. 4c,d). We show that the strongest pattern
values (i.e., largest deviations of local warming compared to
global warming) and the strongest intermodel spread in the
pattern of warming are located in high latitudes, notably in
the Arctic and the Southern Ocean, but also in the North
Atlantic, and the northwest Pacific. We also find that key re-
gions where the Green functions have the most impact on
the radiative response (tropical western Pacific and tropical
Atlantic) show moderate patterns and very limited intermo-
del spread (see Figs. 4a,b).

Despite a smaller spread in warming patterns, the tropical
regions have the strongest pattern effect and generate the
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highest intermodel standard deviation in radiative response
because of the high sensitivity of the Green functions to these
regions (see Figs. 4c,d). It means that differences in the pat-
tern effect among models are governed by small differences
in the pattern of warming in the key tropical regions that mat-
ter for the global energy budget.

Similar maps to Figs. 4a and 4c are presented for individual
models in Figs. S7 and S8, respectively, in the supplemental
material. These figures show that in the key sensitive regions
of the Green functions, i.e., around the west Pacific warm-
pool, most models show a combination of positive, neutral,
and negative radiation induced by the pattern effect. The rela-
tive weight of each contribution determines the total magni-
tude of the radiative response induced by the pattern effect.
Meanwhile, IPSL-CM6A-LR shows an intensified warming
in the entirety of the sensitive region, which leads to the
strongest negative pattern effect of all the models. At the
other end of the spectrum, E3SM-1-0 is the only model that
shows reduced warming over the full sensitive area com-
pared to the global average, leading to a strong positive pat-
tern effect.
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c¢. Interannual and decadal internal variability

Along with multidecadal changes, all models show internal
variability at various frequencies. The pattern effect induces
high-frequency internal variability of the radiative response
(lower than 5 years, see Fig. 3) that could be related to the
modes of internal variability that have been associated with
the pattern effect such as El Niflo-Southern Oscillation
(ENSO; Ceppi and Fueglistaler 2021; Tsuchida et al. 2023), or
the Atlantic multidecadal oscillation (AMO; Dessler 2020).
The Pacific decadal oscillation (PDO) could also explain lower-
frequency internal variability in the pattern effect (Loeb et al.
2018; Meyssignac et al. 2023a). As Green’s functions show more
sensitivity to the tropical Pacific (Bloch-Johnson et al. 2024, and
Fig. S1), the internal variability here is probably more asso-
ciated with ENSO and the PDO than with the AMO. Note
that we do not use Green’s functions for sea ice as in Bloch-
Johnson et al. (2024), Dong et al. (2019), which means inter-
nal variability associated with sea ice change may be missing
(Dessler 2020).

d. Influence of the pattern effect on GMST change

1) GLOBAL MEAN TEMPERATURE RESPONSE TO THE
LONG-TERM FORCED PATTERN EFFECT

We show the results of the influence of the pattern effect
on the GMST change in Fig. 5. Overall, the multidecadal
changes are similar to the changes in the pattern effect, but
the time series are smoothed out. As the radiative response
induced by the pattern effect acts as a pseudoforcing on
GMST, a negative (positive) pattern effect causes an equiv-
alent negative (positive) forcing, which induces global cool-
ing (warming). Most models show a damping of the
warming because of the pattern effect, with cooling up to 1
K after 100 years of simulations. CESM2 shows slight cool-
ing for the first 100 years and a slight warming amplification
for the last 50 years. MRI-ESM2-0 shows no substantial
change for the total simulation, while HadGEM3-GC31-LL
shows no change for the first 100 years, which is followed by
a warming trend until the end. E3SM-1-0 shows intensified
warming because of its simulated positive pattern effect,
with the strongest amplified warming of all models of up to
1 K after 150 years. The magnitude of the GMST change in-
duced by the pattern effect can be up to 20% of the total
GMST magnitude.

As presented earlier, the TCR is defined as the GMST
change in response to increasing CO, concentrations at a rate
of 1% per year until 2 times the preindustrial concentrations
are reached (IPCC 2021). The TCR hence corresponds to year
70 in the 1pctO2 time series studied here. The TCR can be de-
composed into two parts. The first one is directly related to
the response of the global energy budget to the radiative forc-
ing TCRF, and the second part is the additional GMST change
induced by the pattern effect TCRp, such that

TCR = TCR;, + TCR,.. (13)

For each model, we quantify TCR, TCRy, and TCRp by
taking the average T, T, and T, during the years 61-80 to
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reduce the influence of internal variability following the stan-
dard practice (e.g., Dong et al. 2021). The results are pre-
sented in Fig. 6 and Table 5. We show that the pattern effect
reduces the TCR in nine out of 12 models, increases it only in
one model, and does not impact it in two. On average, our re-
sults suggest that the TCR is damped by the pattern effect,
with an average of —6.0% [—11.3; 0.5] (quantiles 17-83, this
uncertainty includes the different Green’s functions and the
different coupled models).

Geoffroy et al. (2012) quantified the role of the pattern ef-
fect induced by ocean heat uptake on GMST in the transient
regime. They take as a reference the “equilibrium” tempera-
ture after a doubling of CO, concentration (which is derived
from a fit to 150 years of abrupt 4xCO, experiment). In addi-
tion, they assume that the pattern effect is induced by an effi-
cacy factor ¢ that applies to the ocean heat uptake (Winton
et al. 2010). Geoffroy et al. (2012) estimate the TCR to be
around 2 K. They also estimate that the pattern effect associ-
ated with ocean heat uptake reduces the global mean surface
temperature anomaly by approximately 0.25 K after 70 years
of 1pctCO2 simulations (see their Fig. 1). This corresponds to
a dampening of approximately 12.5% of the TCR caused
by the pattern effect, which is slightly more than our esti-
mates. This gap could be explained by three main differences
between their study and ours. First, Geoffroy et al. (2012)
show that the pattern effect reduces the GMST for all time
scales from years 1 to 70, while in our approach, it can reduce
or enhance the GMST depending on the time scale. This is
because we take as a reference the preindustrial GMST, while
Geoffroy et al. (2012) take as a reference the equilibrium tem-
perature. Second, Geoffroy et al. (2012) show a monotonic re-
sponse of the GMST to the pattern effect for all simulations,
while, for some simulations, we show a response with an in-
flection point, with decreasing GMST in response to the pat-
tern effect in the first decades and then increasing GMST in
the following decades. The monotonic response in Geoffroy
et al. (2012) is coming from the assumption that the pattern
effect is induced by the efficacy of the ocean heat uptake. In-
deed with such an assumption, the pattern effect is by defini-
tion of the same sign for all time scales in a simulation under
increased CO, concentrations [see e.g., Fig. 4 in Winton et al.
(2010)], and thus, the effect on the GMST is monotonic. Our
approach, which is based on Green’s functions, is more gen-
eral as it allows for the pattern effect induced by any changes
in the surface warming pattern and not only changes related
to ocean heat uptake efficacy (see Meyssignac et al. 2023b
section 7). Our approach shows that in some simulations, the
surface warming pattern induces some pattern effect that leads
to some inflection in the GMST response, which would not be
possible if this was only driven by the global ocean heat uptake
efficacy. Finally, we only use CMIP6 models, while Geoffroy
et al. (2012) use models from previous CMIP generations, which
could also cause differences in the results.

Overall, our analysis shows that the pattern effect generally
reduces transient warming when responding to increased CO,
forcing. Still, models show differences in the magnitude of
this GMST change mediated by the pattern effect, which
means that similar responses to the radiative forcing may lead
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FIG. 5. GMST change induced by changing warming patterns. The lines show the results obtained with the mean pattern effect com-
puted from the mean of Green'’s functions. The green shaded areas represent the 17th and 83rd quantiles reached with individual Green’s

functions.

to different global warming because of the pattern effect.
As an example, three models studied would have a very sim-
ilar TCR if the warming was uniform, but they have a differ-
ent pattern effect: IPSL-CM6A-LR, HadGEM3-GC31-LL,
and E3SM-1-0. Their TCR standard deviation is increased
from 0.05 K with uniform warming only to 0.37 K because
of the pattern effect. Our findings highlight the importance
of taking the pattern effect into account when analyzing the
decadal-scale GMST change in response to radiative forc-
ing. This supports the recent claim that the pattern effect
should be considered for decadal to centennial climate pro-
jections (Alessi and Rugenstein 2023; Armour et al. 2024;
Watanabe et al. 2021).

2) GLOBAL MEAN TEMPERATURE RESPONSE TO THE
INTERNAL VARIABILITY OF THE PATTERN EFFECT

Internal variability has a different effect on the GMST
change induced by the pattern effect than on the pattern ef-
fect itself. Indeed, when integrating the radiative response of
Earth to get the associated GMST changes, the ocean acts as
a low-pass filter on the radiative forcing [see Eq. (5) and
Geoffroy et al. (2013a)]. The ocean acts the same way on the
radiative response associated with the pattern effect. This
means that the high-frequency variability of the pattern effect
is mostly filtered out during the integration and will not affect
the GMST. The two-layer model in Eq. (5) represents this
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The dots represent the mean values for all the Green function, and the error bars show the 17th and 83rd quantiles.

The colors represent the sign of the mean estimate.

ocean filter as a second-order low-pass filter, with a cutoff pe-
riod given by

All
T=2m (14)

We estimate this cutoff period to be 42 * 11 years in the
models studied.

The Bode plot of the two-layer model of Eq. (5) is pre-
sented in Fig. 7. It shows the magnitude of reduction and
the phase shift for each period of internal variability. The
high-frequency variability of the pattern effect associated,
for example, with ENSO (Ceppi and Fueglistaler 2021) or sea
ice changes (Dessler 2020) will be strongly attenuated and
will affect the GMST change only marginally. However,
lower-frequency internal variability, such as the PDO, will be
hardly damped and will affect the GMST change much more

intensely, although with a lag of about a quarter of the period
of the low-frequency internal variability. This supports previ-
ous results from observations (Loeb et al. 2018; Meyssignac
et al. 2023a).

5. Discussion

a. Remaining errors in the multivariate energy balance
model reconstruction

In section 3, we use a multivariate energy balance model
to reproduce the Earth energy imbalance as shown in Fig. 1.
Although it is an appropriate approximation at multidecadal
time scales, there are still some slight deviations toward the
last decades of the simulations. These deviations could be
explained by two different causes, which are the feedback
temperature dependence and the nonlogarithmic forcing of

TABLE 5. Contribution of the radiative forcing and of the pattern effect to the TCR. Uncertainty ranges correspond to the 17th and
83rd quantiles of the values obtained with different Green’s functions.

Model TCR (K) TCR (K) TCR, (K) TCR/TCR (%)
BCC-CSM2-MR 1.95 [1.94; 1.96] 2.1 [2.0; 2.14] —0.14 [-0.2; —.04] —6.5[-9.3; —2.2]
CESM2 22 [2.17;2.23] 2.3 [2.28; 2.38] —0.13 [0.2; —0.04] —5.7 [-8.4; —19]
CNRM-CM6-1 2.3 [2.28; 2.34] 2.5 [2.4;2.53] —0.18 [~0.23; —0.05] ~7.1[-9.1; —2.0]
CanESMS5 2.64 [2.63; 2.66] 3.0 [2.84; 2.9 ~0.31 [-0.35; —0.2] ~104 [~11.6; —7.1]
E3SM-1-0 3.06 [3.01; 3.1] 2.8 [2.72; 2.97] 0.24 [0.13; 0.31] 8.6 [4.4; 11.9]
GFDL-CM4 2.18 [2.17; 2.19] 23 [2.23;2.37] ~0.14 [~0.18; —0.05] 6.0 [~7.6; —2.2]
GISS-E2-1-G 1.67 [1.66; 1.68] 1.9 [1.75; 1.92] —0.2 [-0.26; —0.07] ~10.9 [—13.3; —4.2]
HadGEM3-GC31-LL 2.69 [2.68; 2.71] 2.7 [2.63; 2.82] —0.04 [~0.12; 0.1] —1.5 [~4.4;3.9]

IPSL-CM6A-LR
MIROC6
MRI-ESM2-0
NorESM2-LM

Mean

232 [2.29; 2.36]
1.52 [1.5; 1.54]
1.72 [1.71; 1.73]
1.53 [1.51; 1.55]

2.15 [1.66; 2.66]

2.7 [2.53; 2.84]
1.7 [1.59; 1.77]
1.8 [1.69; 1.8]
1.7 [1.51; 1.77]

23 [1.75; 2.78]

—0.39 [—0.49; —0.21]
~0.19 [~0.24; —0.09]

~14.4 [~17.0; —82]
~11.3 [~13.4; —5.5]

—0.04 [—0.09; 0.06] 2.4 [-4.9;3.7]
—0.13 [-0.27; 0.01] ~7.6 [-15.1; 0.4]
—0.14 [—0.28; 0.01] —6.0 [~11.3; 0.5]
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FIG. 7. Bode plot for the low-pass filter corresponding to the
two-layer model for each model studied. Individual models are
shown in light gray and the multimodel mean is shown in darker
gray with thicker lines. The mean and total range of the cutoff fre-
quencies wy are displayed with a gray marker and a gray horizontal
line, respectively. Periods roughly corresponding to ENSO and the
PDO are indicated with the green shaded areas. (a) Magnitude re-
duction of the filter. (b) Phase shift of the filter.

COa,. In this section, we explore these two possibilities with
CESM2.

To determine Eq. (2) for the multivariate radiative re-
sponse, we only used the first-order Taylor expansion. How-
ever, several studies (e.g., Bloch-Johnson et al. 2021; Ceppi
and Gregory 2019) suggest that models show a feedback tem-
perature dependence that becomes significant for a high
GMST change. Regardless of changing patterns, this would
mean that the radiative response to uniform warming is not
linear but quadratic with the GMST change. With this addi-
tional quadratic dependence, the Earth energy imbalance
[Eg. (3)] would read

N(@t) = F(o) + AT + LT () + P(). (15)

Bloch-Johnson et al. (2021) show that CESM2 has one of
the highest feedback temperature dependences of the 14
models they studied. To test the influence of the feedback
temperature dependence on our reconstruction, we use an
approximate value of A, = 0.04 W m~2 K2, which is within
the range of Bloch-Johnson et al. (2021). With this, the
RMSE between the Earth energy imbalance and the multi-
variate energy balance approximation for CESM2 goes
from 0.43 to 0.39 W m ™2 and produces a visually better re-
construction (see Fig. SOb).

We assumed that the radiative forcing is logarithmically in-
creasing with time. This approximation is a very good first-or-
der approximation but can be limited (Gregory et al. 2015;
Etminan et al. 2016). Notably, Gregory et al. (2015) showed
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that this approximation could lead to errors in interpreting
the GMST change in 1pctCO2 experiments. Instead of using
a linear approximation, they parameterize the forcing as

F() = fit + £, (16)

Using ordinary least squares on the CESM2 run, which has the
largest errors using Eq. (3), we estimate f; = 0.063 W m™2 yr™!
and f, = 7 X 107> W m™2? yr~2, which is consistent with the val-
ues found by Gregory et al. (2015). Such estimates of the forc-
ing slightly reduce the RMSE between the true Earth energy
imbalance and the multivariate energy balance model from
0.43 to 0.40 W m ™2, which is of similar magnitude as if there
was a quadratic dependence to the GMST. The fit is also vi-
sually better as shown in Fig. S9c.

These two sources of error could explain the differences be-
tween the multivariable energy budget [Eq. (3)] and the Earth
energy imbalance for the last decades of the simulation. How-
ever, determining precisely which one has the most impact
here would require further investigation. To accurately quan-
tify these two potential sources of error, one could use specific
simulations to determine their individual contributions. The
nonlogarithmic forcing of CO, could be determined using a
piClim-1pctCO, simulation, which would be a fixed-SST ex-
periment, similar to piClim-4xCO,, but with gradually in-
creasing CO, concentrations. This would be, in essence,
similar to piClim-histall experiments from RFMIP (Pincus
et al. 2016). The nonlogarithmic forcing would not lead to re-
construction errors with such an explicit estimate of radiative
forcing. The feedback temperature dependence for uniform
warming could be determined using several uniform warming
experiments with various warming levels (amip-p2K, amip-
p4K, and amip-p6K) as in Ceppi and Gregory (2019). This
way, the quadratic dependence of the radiative response on
uniform warming could be estimated. Note that some addi-
tional nonlinearities could also arise from the Green functions
(Williams et al. 2023; Bloch-Johnson et al. 2024), which would
require more elaborate developments to determine the pat-
tern effect. These potential errors have not been quantified in
this study.

b. Relevance for historical and future warming

In this study, we only looked at an idealized setup to
study transient warming. However, key elements are miss-
ing to compare our results with historical and future warm-
ing. First, we mostly focused on the forced component,
while internal variability is more important compared to the
forced response in historical or future warming (Meyssignac
et al. 2023a; Dessler 2020; Chao et al. 2022). Second, we
only looked at the pattern effect induced by CO, radiative
forcing. However, different forcing agents can induce differ-
ent pattern effects (Zhou et al. 2023; Salvi et al. 2023), and
notably aerosol forcing has been identified as a key driver of
warming pattern formation (Hwang et al. 2024; McMonigal
2024; Gilinther et al. 2022), which is not taken into account
in our idealized case.

We now compare our results with the forced components
of historical simulations. We compute the pattern effect time
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FIG. 8. Comparing the pattern effect in historical simulations and
in 1pctCO; simulations. The letters indicate the mean pattern ef-
fect in the first 30 years of the 1pctCO2 simulation (x axis) and the
ensemble-mean pattern effect over the years 1984-2014 in histori-
cal simulations (y axis) for each model studied. The dashed line
shows the regression line between the two variables.

series in historical simulations using the same method as in
section 3 and average the results over all ensemble members
available for each model to extract only the forced response.
The pattern effect time series are presented in Fig. S10. Over-
all, we find that the forced pattern effect is also generally neg-
ative in historical simulations, which would damp global
warming as in 1pctCO, simulations. Figure 8 shows the mag-
nitude of the pattern effect during the first 30 years of the
1pctCO2 simulations compared to the last 30 years of the
historical simulations. We find that models that tend to have
more negative pattern effects in 1pctCO, simulations also
have more negative pattern effects in historical simulations
(with a Pearson r value of 0.53). Although the quantification
is limited, this shows that the forced pattern effect in re-
sponse to CO, increase is relevant for the forced historical
response. Our results suggest that during the historical pe-
riod, the pattern effect may be generally dominated by CO,
forcing. This is consistent with previous work highlighting
that 1pctCO, and historical simulations have similar pat-
terns of warming (Dong et al. 2021; Armour et al. 2024).
Further studies could apply our analysis to separate forcing
experiments using RFMIP simulations such as piClim-GHG
and piClim-aer.

Figure 8 only shows the forced response comparison. Con-
trary to 1pctCO, runs, historical simulations are much more
subject to internal variability compared to the forced signal.
Our results suggest that high-frequency variability such as
ENSO (Ceppi and Gregory 2019; Tsuchida et al. 2023) should
not impact the GMST through their pattern effect in historical
simulations as it is filtered out by the low-pass filter imposed
by the ocean dynamics. However, internal variability associ-
ated with the PDO is likely to affect GMST in historical simu-
lations or in the real world. Further study should investigate
the influence of low-frequency variability on the pattern effect
(e.g., Wills et al. 2021).
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Multiple studies highlight that the pattern of warming in
historical simulations is different than the pattern in observed
SST, which is likely due to the systematic biases in climate
models (Seager et al. 2022; Wills et al. 2022). Notable biases
in tropical warming gradients have been associated with
biases in the global radiative response (e.g., Fueglistaler and
Silvers 2021; Andrews et al. 2022; Armour 2017; Chenal et al.
2022). In climate model simulations, the historical warming
patterns are close to the 1pctCO; patterns and both are differ-
ent from the observed warming patterns, meaning the quanti-
tative impact of the pattern effect on historical warming is
likely different from the results shown in this study. As we
provide a framework to systematically quantify the impact of
the pattern effect on GMST change, our approach could fur-
ther be applied to understand how the observed warming pat-
terns affected the historical GMST. One could notably
determine how such a historical pattern would affect decadal
climate projections if it was forced and thus persistent over
the decades to come [extending the work from Watanabe et al.
(2021), Alessi and Rugenstein (2023); Liang et al. (2024);
Armour et al. (2024].

6. Conclusions

In this paper, we have quantified the radiative response to
nonuniform warming, referred to as the pattern effect, in
1pctCO, experiments and determined its influence on decadal
global warming. To do so, we separated the radiative response
induced by uniform warming from the radiative response in-
duced by changing warming patterns. Overall, we found that
in 1pctCO, experiments, the pattern effect is essentially
forced and induces a negative radiative response, which con-
sequently dampens global warming. Notably, we show that
the transient climate response is reduced by 6% on average
because of the pattern effect. We also found differences in cli-
mate models and highlighted that the forced pattern effect
can significantly affect decadal warming. Our results are rep-
resentative of the forced pattern effect in historical simula-
tions, but further work is required to determine the influence
of other forcing agents, such as aerosols, and of the modes of
atmosphere-ocean internal variability on global warming
through the pattern effect. We highlight that the impact on the
GMST of the high-frequency variability of the pattern effect,
such as associated with ENSO, should be largely attenuated,
while the PDO may substantially influence decadal warming.

Acknowledgments. We acknowledge the World Climate
Research Programme’s Working Group on Coupled Model-
ling, which is responsible for CMIP, and we thank the climate
modeling groups for producing and making available their
model output, specifically modeling groups participating in
CFMIP and RFMIP. We also thank the GFMIP community
for making the preliminary Green’s functions outputs available
online. We also thank Rémy Roca and Paulo Ceppi for their
insightful discussions and comments. The authors declare no
conflict of interest. R.G.C was partly funded by the European
Union, GA#101126560; Bergen research and training program
for future Al leaders across the disciplines, LEAD Al. B.M.
was supported by the ESA Climate space Programme under
the Cross-ECV project MOTECUSOMA.



3432

Data availability statement. CMIP6 data used in this study
are available on the Earth System Grid Foundation at https:/
esgf.llnl.gov/. All Green’s functions are available at https://
github.com/GFMIP/preliminary_spatial_feedbacks/tree/main/
data. Surface albedo feedback data are available at https://
github.com/mzelinka/cmip56_forcing_feedback_ecs. Snow
surface albedo feedback data were extracted from Table 1
of Qu and Hall (2014). Scripts for the processing and fig-
ures in this paper are available on the following Zenodo ar-
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APPENDIX A

Mode Parameters for the Two-Layer Ocean Model

Following Geoffroy et al. (2013a) and Rohrschneider
et al. (2019), using the two-layer ocean model to represent
the ocean inertia yields the following GMST change in re-
sponse to the change in radiative forcing F and to the pat-
tern P [Eq. (6)]:

T(1) = )[djf Fls)e 9 ds + o, J‘ Fls)e ””/ds}

aw+%

Tpt) = )[wf P(s)e” " rds + J P(s)e "~ ”des]

a¢+%
(A1)

where 7, and 7 are the slow and fast characteristic time scales,
respectively, and i, and i, are the mode parameters. These
four parameters can be obtained by combining the ocean
model parameters C, Cy, and +y with the uniform warming cli-
mate feedback parameter A, with

Aty v . Aty v Ay
b= Yy ¥ =l Y Y o2 g4l
c G c G - cc,
cc, _cc,
Tf*m( \[5) Tsfm(b'i“[g)
C * _C *
Uy 2—7( Vs) pr—z—y(b + Vo)
(A2)

More details on how to determine these parameters are
provided in Geoffroy et al. (2013a) and Rohrschneider et al.
(2019).

APPENDIX B

Quantifying the Sea Ice Surface Albedo Feedback

While the data for ;. are not directly available for the
models we are using, we can estimate it using the values from
the total surface albedo feedback quantified by Zelinka et al.
(2020), which were computed using radiative kernels. The to-
tal surface albedo feedback is primarily driven by the changes
in sea ice and snow cover (IPCC 2021). Thus, we can express
the total surface albedo feedback « as the sum of contribu-

tions from snow, here ag,ow and ice: @ = agow + Qjce-
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We assume that the ratio of o, to the total surface al-
bedo feedback « is consistent across different climate mod-
els. We then compute this ratio using CMIP5 model data,
combining Zelinka et al. (2020) estimates of total surface
albedo feedback « and snow surface albedo feedback esti-
mates agnow from Qu and Hall (2014). Our findings suggest
an aje/aor ratio of 0.82 = 0.06 for CMIP5 models. This
consistency across models supports our hypothesis that the
ratio of aj.. to the total surface albedo feedback is rela-
tively stable.

This ratio is then combined with each individual CMIP6
model’s a estimate from Zelinka et al. (2020). We estimate the
sea ice surface albedo feedback to be 0.37 + 0.08 W m™* K1
(multimodel mean and standard deviation), which is slightly
higher than the values used by Ceppi and Gregory (2019), of
020 and 030 Wm > K.
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